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A B S T R A C T   

Observers are deployed on commercial fishing trips to collect representative samples of discard rates. However, 
fishers may change their fishing habits when an observer is onboard (“observer effect”) or observer programs 
may over- or under-sample portions of the fleet (“deployment effect”). If the extent of these effects are sub
stantial, observer data will not be representative of unobserved trips, potentially biasing the estimation of dis
cards. This sampling bias can impact catch monitoring, stock assessments, and fishery management. The purpose 
of this study was to examine the power and error rate of several published methods for detecting an observer 
effect using a simulation of observer and deployment effects at varying sampling ratios (i.e., observer coverage) 
for several sample statistics. The simplest methods (t-test and F-test for difference of means and variances) 
provided an accurate although imprecise estimate of the observer effect size, but only when there were no 
deployment effects. A generalized linear mixed effects model (GLMM) was also not reliable for detecting small 
bias, but was not confounded by deployment effects and was relatively robust to changing coverage rates. The 
most complicated tests involved comparing differences in trip characteristics between subsequent trips for 
observed-unobserved and unobserved-unobserved pairs. These tests were able to detect smaller observer effects 
and were not confounded by deployment effects, but were unreliable at high coverage rates (>60%), producing 
both high false positive and false negative rates. Sensitivity tests also showed differing detection accuracy as the 
distribution of the metric of interest changed. Thus, the optimal test for detecting an observer effect will depend 
on the metric of interest, the coverage rate, and whether a deployment effect exists. An example from the New 
England groundfish fishery is provided to illustrate how conflicting results may be explained. Results should 
always be considered carefully when declaring that an observer effect is or is not occurring because of the 
sensitivity of the tests.   

1. Introduction 

Monitoring fisheries at sea helps to inform fisheries management, but 
representative observer coverage is expensive (Davies and Reynolds, 
2002; Suuronen and Gilman, 2020). Sampling strategies are designed to 
meet statistical requirements but assume that samples of observed 
fishing trips represent those discard rates of unobserved trips (Hall, 
1999). Non-random selection of trips to observe can result in 

“deployment effects”, and alterations in fishing practices once the 
observer is onboard can cause “observer effects”. 

In fisheries with less than 100% observer coverage, total discards are 
typically calculated by expanding observed discards using a ratio esti
mator (Cochran, 1977). This can be based on effort (observed discards / 
observed effort x total effort) or landings (observed discards / observed 
total kept x total landings), both of which require a measure of total 
effort or landings, possibly from self-reported logbook data, dealer 
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reports, and/or vessel monitoring systems. Sampling designs are often 
stratified so that expansions are by strata such as gear type and region (e. 
g., Rago et al., 2005). Confidence intervals around these estimates 
indicate the variability in the observed trips within each stratum and are 
a function of the sampling ratio (i.e., observer coverage). 
Non-representative sampling may lead to biased estimates, causing er
rors in total catch estimates, inaccurate stock assessments, and 
non-optimal target reference points (Rudd and Branch, 2017). 

The observer effect occurs when the presence of an observer causes 
the fisher to behave differently than they would on an unobserved trip. 
For example, a captain may fish an area of lower bycatch with an 
observer or use a different type or size of gear. Observer effects may also 
be unintentional. For example, if the vessel experiences higher operating 
costs while carrying an observer which results in the trip being shorter 
than it would have been, discard rate estimates may be biased (Faunce 
and Barbeaux, 2011). If an observer effect is large enough, it can violate 
the assumption that samples from observed trips are representative of 
the fleet as a whole and bias the extrapolations of observer discard rates 
to unobserved trips (Babcock et al., 2003). 

Several methods have been developed for detecting observer effects. 
Rago et al. (2005) compared observed and unobserved trips for average 
landings, trip duration, and spatial distribution of fishing effort using 
paired t-tests of averages and standard deviations by stratum. They 
described two types of bias: non-representative sampling (i.e., the 
observer and deployment effects), and the “statistical properties of the 
consistency of the estimators” (i.e., the inherent bias of ratio estimators, 
on the order of 1/n (Cochran, 1977)) and concluded there was no evi
dence that increasing the sampling percentage would reduce the 
observer effect. Faunce and Barbeaux (2011) proposed a more complex 
method for detecting observer effects, using generalized linear mixed 
effects models (GLMMs), and accounting for factors such as vessel size, 
gear type, and season. Vessel identity was used as a random effect to 
account for the differences in mean landings. If removal of the observer 
term (a nominal binary variable) resulted in a higher AIC (Akaike In
formation Criterion) value, it was considered strong evidence that an 
observer effect had occurred. The method developed by Benoît and 
Allard (2009) compared pairs of sequential fishing trips by the same 
vessel in the same fishery. If the difference in the metric of interest (e.g., 
total landings) between observed trips and their sequential unobserved 
trips was greater than the difference between two consecutive unob
served trips, then an observer effect was deemed to be occurring. 

The multispecies groundfish fishery in New England has been pri
marily managed by an output-control system that allocates tradeable 
quota to self-organized fishing cooperatives (“sectors”) since 2010. 
Observed discard rates are used to monitor quotas as well as for stock 
assessments. This system may create an economic incentive for fishers to 
behave differently on observed trips (Demarest, 2019). The amount of 
observer coverage needed is based on achieving lower than a 30% co
efficient of variation (CV) for discard estimates for each of 24 managed 
stocks (GARFO Greater Atlantic Regional Fisheries Office, 2021). Real
ized observer coverage rates ranged from 14% to 32% between 2010 
and 2019. The fishery management plan was amended in 2021 to 
improve the reliability and accountability of catch reporting by 
increasing the target monitoring rate (combination of human observers 
and electronic monitoring) to 100% (NEFMC New England Fishery 
Management Council, 2021). 

1.1. Objectives 

The goal of this study is to test the efficacy of published methods 
(Rago et al., 2005, Faunce and Barbeaux, 2011, and Benoît and Allard, 
2009) for detecting an observer effect, using data from the Northeast 
groundfish fishery as a case study. For each method, the following 
questions are asked:  

1. In the absence of any effects (e.g., randomly selected trips with no 
systematic differences between observed and unobserved trips), how 
often would we expect to see false positive results indicating an 
observer effect?  
a. If there are false positives, what factors may be influencing them 

(e.g., observer coverage rate, within-trip variability)?  
2. In the presence of an observer effect (i.e., systematic differences 

introduced on observed trips), how often would we expect to see true 
positive results?  
b. If there are false negatives, what factors may be influencing them 

(e.g., observer coverage rate, within-trip variability)?  
c. What is the minimum detectable effect size?  

3. How confident should we be in positive or negative results from 
these tests? 

2. Methods 

To accomplish the stated objectives, we:  

1. Developed simulation methods, including introducing a desired 
amount of bias on observed trips at coverage rates from 5% to 85%;  

2. Applied five published tests from three studies (Benoît and Allard, 
2009; Faunce and Barbeaux, 2011; Rago et al., 2005) on those 
datasets;  

3. Quantified the rates of true and false positives and negatives of bias 
detection; and  

4. Replicated these steps to achieve a reliable distribution of results. 

All analyses were done using R (R Core Team, 2022). 

2.1. Data selection for conditioning simulations 

Trips taken by commercial fishing vessels were selected from the 
Northeast Fisheries Science Center (NEFSC) Vessel Trip Report (VTR) 
database from the New England large mesh otter trawl fleet from April 
2018 through March 2019 (aligning with the dates used in the Stan
dardized Bycatch Reporting Methodology [SBRM], Wigley and Tholke, 
2020). Groundfish landings in this fishery were used as an example 
metric to test because it has been previously identified as one that may 
be subject to an observer effect (Demarest, 2019). For each vessel v with 
at least 20 trips over the year and at least one record of kept groundfish 
(Gv), the proportion of trips with groundfish landings pv was calculated, 
along with the mean xv and standard deviation sv when groundfish 
landings were non-zero. These were converted into the parameters for a 
delta-lognormal distribution: 

Gv ∼ Binomial(pv) ∗ Lognormal(μv, σ2
v)

with the probability of encounter pv for the binomial component, and μv 
and σv for the lognormal component calculated as: 
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To mimic these patterns for simulations, four distributions and their 
controlling hyperparameters were defined: 

Number of trips: nv ∼ NegBinomial(rn,pn)

Proportion of non-zero trips: pv ∼ Beta(αp,βp)

Log mean of positive values: μv ∼ N
(
μm, σ2

m
)

Log standard deviation of positive values: σv ∼ N(μs,σ2
s )
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One set of parameters (nv, pv, μv, and σv) was drawn for each vessel, 
and nv trips were drawn from that vessel’s unique distribution set Gv ∼

Binomial(pv) ∗ Lognormal(μv, σ2
v ) (the number of vessels was fixed at 100 

for all exercises, roughly based on the 113 vessels in the year and fleet 
used for conditioning). From there, a percentage of trips were marked as 
“observed” (GO) and the remainder as “unobserved” (GU). Unless 
otherwise specified, this percentage was the same for all vessels within a 
simulation (i.e., no deployment effects or non-random selection of trips). 

The hyperparameters (rn, pn, αp, βp, μm, σm, μs, and σs) control the 
variability within and between vessels. For example, μs controls the 
mean of the within-vessel deviance (do all vessels get assigned a larger 
or smaller standard deviation term) while σs controls some of the 
between-vessel variance (do different vessels get assigned more similar 
or more disparate standard deviation terms). By manipulating the 
hyperparameters, many different data sets were created. The hyper
parameters for simulated groundfish landings (default) and sensitivity 
test ranges are listed in Table 1. 

To replicate an observer effect, a bias term was added that would 
adjust the generated landings only on observed trips. For a given amount 
of bias b, expressed as a proportion of the original data value, all GO 

values were replaced by GO ∗ (1 + b). Thus, a b of − 0.2 represents a 20% 
decrease on observed trips, while a b of 0.05 represents an increase of 
5%.1 This adjustment was made after the original data were generated 
and selected as observed or unobserved. In reality, some vessels would 
exhibit more or less of an effect than others, and the amount of bias 
would also vary between trips on the same vessel. Such variability would 
likely make the detection of an observer effect more difficult, so the 
detection rates presented here may be considered upper bounds. If 
positive and negative effects occur concurrently in the same fishery, they 
may mask any per-vessel differences (Demarest, 2019). 

To replicate a deployment effect (non-random observer coverage), 
the selection of “observed” trips was weighted by average landings (μv), 
such that the vessels with the highest μv would be selected at twice the 
target coverage rate, and the vessels with the lowest μv would be selected 
at near 0%. This was termed the “high catch preference” scenario. In the 
“low catch preference” scenario, the weightings were reversed so that 
the vessels with the highest average landings received the lowest 
coverage. These situations can occur if differential deployment is based 
on some factor that scales with catch. For example, the “high catch 
preference” scenario could represent observers being preferentially 
assigned to larger boats that conduct multi-day, offshore fishing trips, 
and the “low catch preference” could represent preference given to 
smaller, inshore, day boats. 

2.2. Observer effect detection 

Three published studies were selected for simulation testing that 
apply alternative approaches to observer effect detection (based on Rago 
et al., 2005; Faunce and Barbeaux, 2011; Benoît and Allard, 2009). Some 
alterations to the published methodologies were necessary because of 
differences in data structure and to facilitate replication. We grouped 
analyses based on the study they were drawn from, so that each group 
may contain more than one statistical test or output. 

2.2.1. t-test and F-test 
Because only one stratum was used in this exercise, differences in 

observed and unobserved trips within each simulation were tested with 
a two-sided Welch’s t-test for difference of means (no assumption of 
equal variances) and an F-test for difference of variances (ANOVA F- 
statistic) to implement a similar method to that described by Rago et al. 
(2005). This is nearly identical to the methods used by Liggins et al. 
(1997). For both tests, a p-value lower than 0.05 was used as the defi
nition of a “positive” result. 

2.2.2. GLMM 
The GLMM metric Gi for trip i and vessel v is given by: 

Gλ
i,v = β0 +Xiβ1 + uv + εi,v  

where λ is the Box-Cox power transformation parameter (here always 
the log transform λ=0), β0 is the model intercept, Xi is a nominal variable 
that is either 0 (unobserved) or 1 (observed), β1 is the fixed effect co
efficient for the observer effect, uv is the random effect for vessel 
(uv ∼ N(0, σ2

u)), and εi,v is the residual deviation (εi,v ∼ N(0, σ2)) to 
implement the method developed by Faunce and Barbeaux (2011). 
Because a number of records had zero landings, those had to be adjusted 
by adding a small amount of landings (chosen from a uniform distri
bution between 0.00098 and 0.00102 pounds) to avoid errors in the 

Table 1 
Parameter values for simulation testing.  

Parameter Description Value for 
simulated 
groundfish 
landings 

Sensitivity 
value range 

rn First parameter for negative 
binomial distribution of 
number of trips; controls mean 
number of trips taken per 
vessel  

8 Constant 

pn Second parameter for negative 
binomial distribution of 
number of trips; controls 
variation in number of trips 
taken per vessel  

0.15 Constant 

αp First parameter for beta 
distribution of proportion of 
non-zero trips; controls spread 
of probability by vessel  

1 Constant 

βp Second parameter for beta 
distribution of proportion of 
non-zero trips; controls spread 
of probability by vessel  

0.1 Constant 

μm Mean of the lognormal for 
vessel mean; central mean 
around which each vessel and 
trip varies  

7 0.5 – 10.5 

σm Standard deviation of the 
lognormal for vessel mean; 
how much each vessel’s mean 
deviates from the central mean  

2 0.5 – 4.0 

μs Mean of the within-vessel 
lognormal variance; how 
much each trip deviates from 
that vessel’s mean  

0.5 0.1 – 2.0 

σs Variance of the within-vessel 
lognormal variance; how 
much each vessel’s variance 
deviates from the overall 
variance  

0.2 0.1 – 0.51  

1 Other studies present alternate numeric definitions of bias. For example, 
Kerr et al. (2020) define bias in terms of the “missing” catch, so a bias of 100% 
indicates that the true catch was twice as high as reported. Using our notation, 
that can be expressed as the “true” GO being replaced with GO/(1 + bK). Thus 
the bias levels used in that paper (0, 50, 125, and 200%) correspond to b values 
of 0, − 0.33, − 0.56, and − 0.67, respectively. 
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log-transformation. Vessels with fewer than two observed and two un
observed trips were removed to minimize the potential influence of rare 
outliers. The model was first fit using all terms, and the AIC value was 
calculated. Then the model was refit with the observer effect term 
removed (i.e., an intercept-only model with random effect of vessel) and 
the new AIC calculated. If the difference between these was more than 2, 
it was taken as a “positive” result for an observer effect, following the 
threshold used by Faunce and Barbeaux (2011), by which an observer 
effect was rejected if the model with observer factor was worse (higher 
AIC) or within the “substantial support” range (within 2 AIC units) of the 
model without the observer factor. 

2.2.3. Triplet method 
Sequences of trips within vessels were identified which consisted of 

either three sequential unobserved trips (U-U-U) or an observed trip 
between two unobserved trips (U-O-U). Triplet sequences from actual 
landings data were restricted to less than a 45-day span between the first 
and last trip in a sequence. Simulated data had no date or inherent order, 
so they were sequenced in the order in which they were drawn. From 
each sequence, the middle trip was compared with either the first or the 
last trip (chosen randomly) to create a pair of unobserved trips (U-U) or 
an observed trip paired with an unobserved trip (O-U). Pairs were 
removed if the earlier trip was the same as the latter trip in the previous 
pair when ordered by date or draw order. Vessels with fewer than 3 
sequences were removed from the analysis. 

For each trip pair j on vessel v, the difference between the G values 
was calculated and standardized by the average value on unobserved 
trips for that vessel (GUv ). The percent change in an observed- 
unobserved (O-U) pair (ΔOj,v ) is given by 

ΔOj,v =
(GOj,v − GUj,v )

GUv 

Similarly, the percent change in an unobserved-unobserved (U-U) 
pair (ΔUj,v ) is given by 

ΔUj,v =
(GU1j,v − GU2j,v )

GUv 

In the absence of an observer effect, the distribution of ΔO should be 
similar to the distribution of ΔU. This was tested using a two-tailed 
Kolmogorov-Smirnov (K-S) statistic. Benoît and Allard (2009) also 
used a Kuiper statistic to test for differences at the extremities. That test 
was omitted here as it restricted the replication of analyses. Benoît and 
Allard (2009) did not find any metrics that were indicated as significant 
using one test but not the other. A p-value of less than 0.05 was taken as 
a “positive” result. 

The median difference was calculated as 

(MΔU − ΔO ) = median(ΔU) − median(ΔO)

This metric is for all vessels within the fleet. Analysis can also be 
done at the individual vessel, to determine if some vessels display more 
of an observer effect than others. Benoît and Allard (2009) pooled Δ 
values over fleets as well as vessels, whereas Demarest (2019) calculated 
median values at the vessel level. Because of the relatively low sample 
size within some vessels, we pooled over vessels (hence the lack of 
subscript v in the above equation). 

To test if medians were significantly different, this statistic was 
sampled with replacement from the ΔU and ΔO values 1000 times. If the 
bootstrap 95% confidence interval did not include zero, that indicated a 
statistically clear difference in the median values. This was taken as a 
“positive” result for an observer effect. 

2.3. Evaluating methodologies 

To evaluate the effect of coverage rate on false positives, 500 repli
cates were run for coverage rates varying from 5% to 85%, in 10% 

increments. The false positive rate (Type I error rate) was calculated as 
the percentage of replicates for that parameter set that returned a pos
itive result from simulations with no observer effect added. To evaluate 
the proportion of true positives (i.e., power of the test), 500 replicates 
were run for the same coverage rates but with observer effects varying 
from − 50 to 0% in 5% increments. To determine the minimum detect
able effect size, the true positive rates (for non-zero bias) were fit with a 
logistic regression against the introduced observer effect size. The point 
at which the fitted line of frequency of detecting an effect crossed 75% 
was taken as the minimum detectable effect size (i.e., the point where 
the power was 0.75). All simulations were repeated with simulated high 
and low preference deployment effects. 

Our preliminary investigation showed that detection rates were 
similar for positive and negative effects (i.e., symmetrical around 0% 
bias). We applied negative bias because it is the more common concern 
based on incentives (Henry et al., 2019). Under the presumption of 
symmetry, the results in this study for b = − 0.5 (50% decrease on 
observed trips) should be roughly similar to b = 0.5 (50% increase on 
observed trips). 

If the test allowed for it, the magnitude of the effect (b̂) was esti
mated in a way that could be comparable to the bias parameter b. For the 
t-test, bias was derived from the difference in group means: 

b̂t =
GO

GU
− 1 

The 95% confidence interval around b̂t was defined as: 

GO ± 1.96st

GU
− 1  

where st is the estimated standard error of the mean difference between 
GO and GU. 

For the mixed effects model, the transformed parameter was used: 

b̂g = exp(β1) − 1 

The 95% confidence interval was calculated as: 

exp(β1 ± 1.96sg) − 1  

where sg is the estimated standard error of the of mean of the β1 
(observer effect factor) coefficient. 

In the median differences test, if the median ΔU ≈ 0, then (MΔU − ΔO )

simplifies to the median of 0 − ΔO, which should be equivalent to me
dian − (GO/GU − 1), thus: 

b̂m = − (MΔU − ΔO )

The 95% confidence interval was taken from the bootstrap as 
described earlier. 

For evaluating estimated effect sizes, we categorized the results as 
“accurate” if the 95% confidence interval around the estimate included 
the true observer effect added, and “precise” if the width of the interval 
was less than 20% (i.e., a margin of error of +/- 10% in terms of observer 
effect magnitude). 

To evaluate the sensitivity of the tests, the hyperparameters were 
adjusted individually (ranges listed in Table 1), with all other parame
ters held at their original value. Coverage rate was tested at 5, 25, 65, 
and 85%, and bias was tested at − 50, − 30, − 10, and 0% (no observer 
effect). No deployment effects were added to sensitivity tests. Each 
combination was simulated 1000 times. Trends were identified using a 
logistic regression of test significance (i.e., 1 if the test was positive and 
0 otherwise) against the value of the hyperparameter. This was evalu
ated independently for each coverage rate, test, and bias level. Results 
with p-values less than 0.0001 were considered significant trends. Note 
that here we use a smaller p-value due to the repeated tests to reduce 
Type I errors. This type of correction wasn’t needed within the indi
vidual simulations, with the presumption that each iteration represents 
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a single test that a researcher would be conducting and thus using the 
p=0.05 standard. 

Lastly, all tests were run on the true observed vs. unobserved 
groundfish landings for New England large mesh otter trawl in SBRM 
year 2018, to compare with the simulated distributions. A null distri
bution was created by randomly assigning observed or unobserved to 
each trip at the realized coverage rate (14.2%) and calculating the test 
statistics. This was replicated 500 times to create a dataset with no 
observer effect and no deployment effect. This was compared to the real 
results to determine what proportion of the null distribution was at least 
as large as the observed test statistic using real data. 

3. Results 

The term “true positive” refers to test results that are statistically 
significant when there is an observer effect, and “false positive” to sig
nificant test results when there is no observer effect. When no bias was 
simulated, any differences between observed and unobserved values are 
due to the stochasticity of the data generating process, just as there 
would be variability between trips in real life. In any random subset of 
trips, there may be differences between observed and unobserved trips 
that are not the result of a systematic observer effect, and it is these cases 
that we have tried to distinguish as “false positives”. 

3.1. Simulated groundfish landings 

3.1.1. Detection rates 
With no observer effect and no deployment effect, the false positive 

results for simulated groundfish landings were low for most conditions 
(Fig. 1). The t-test tended to perform worse at lower coverage (8–13% 
false positive rate at 5% coverage) but otherwise stayed less than 10% 
false positives (2–9%, Fig. 1a). The median difference test was less 
reliable at higher coverage (11–18% false positive at 85% coverage), but 
otherwise had less than 5% false positives (0–4%, Fig. 1e). The other 
tests did not vary much with coverage rate, with the K-S test having a 
slightly lower false positive rate (1–7%, Fig. 1d) than the GLMM test 
(2–8%, Fig. 1c) and F-test (2–7%, Fig. 1b). 

When deployment effects were added, the t-test and F-test returned 
at least 75% false positives for all coverage rates and both preference 
types (Figs. 1f, 1g, 1k, and 1l). The GLMM results were slightly higher 
than in the no preference scenario (2–11%, Figs. 1h and 1m), as was the 
K-S test (2–8% (Figs. 1i and 1n). The median difference test did not show 
the high increase in false positives at high coverage as in the no 
deployment scenario; otherwise, it did not differ much by coverage or 
between scenarios (0–4%, Figs. 1j and 1o). 

When no deployment effects were present, the true positive rates 
(power) were generally higher with increasing magnitude of observer 
effect added for all tests (Fig. 2). The t-test and F-test had slightly lower 
power at the smallest and largest coverage rates for a given amount of 
bias (Figs. 2a and 2b). Power was above 96% for both tests at coverage 
rates between 25% and 65% and the highest bias (-50%). At moderate 
bias (-30%), the power dropped to between 73% and 87% at medium 
coverage, and at low bias (-10%) the power was only 11–25%. The 
GLMM test results were similar (100% power for high bias, 86–91% for 
moderate bias, 11–17% for low bias; all lower at the highest and lowest 
coverage rates; Fig. 2c). The K-S test and median difference tests, on the 
other hand, were more strongly affected by coverage rate (Figs. 2d and 
2e). At high and moderate bias, the power was above 96% when 
coverage rates were 65% or lower. As coverage increased, the power 
sharply decreased to less than 40% at the highest coverage (85%). At 
low bias, the highest power was 44–68% at 25% coverage, above and 
below which the power decreased. 

When both observer and deployment effects were present, the GLMM 
test was the most consistent across all scenarios, with true positive rates 
being only slightly lower when deployment effects were introduced 
compared to the no preference scenario (particularly for the high catch 

preference scenario) and a more pronounced decrease at higher 
coverage (Figs. 2h and 2m). In the low catch preference scenario, the t- 
test and F-test returned positive results for over 94% of simulations 
regardless of bias or coverage (Figs. 2k and 2l). In the high preference 
scenario, at low coverage rates the tests became less powerful as bias 
increased; at 15% coverage the power of the t-test was 97–99% for low 
bias, 77–84% for moderate bias, and only 5–9% for high bias (Figs. 2f 
and 2g). The K-S test and median difference test showed similar patterns 
to the no preference scenario (high power at high and moderate bias, 
highest power for low bias occurred around 25% coverage) with the 
exception of the sharp decrease in power at the highest coverage rates 
(Figs. 2i, 2j, 2n, and 2o). 

The minimum detectable effect size differed strongly by test, 
coverage rate, and presence of a deployment effect (Fig. 3). Overall the 
K-S test and median difference test were the most sensitive, reliably 
detecting observer effects as low as 12%. They both performed best 
when coverage rates were between 15% and 55%. Under the no 
deployment effect scenario, both tests were unable to reliably detect 
even large observer effects at high coverage rates (>75%, Fig. 3a), which 
did not occur when deployment effects were added (Figs. 3b and 3c; see 
Trip Filtering, below). The GLMM test was the next most reliable, 
detecting observer effects as small as 22% and performing best at 
coverage rates between 25% and 65%. At the lowest coverage rates, the 
GLMM test was unable to reliably detect observer effects smaller than 
45%. It performed slightly worse with the high catch preference 
deployment effect scenario (Fig. 3b). 

The t-test and F-test performed worst overall, only able to reliably 
detect effect sizes as low as 25% in the best scenario (25–75% coverage 
rate with no deployment effect, Fig. 3a). When deployment effects were 
added, a minimum detectable effect size could not be calculated 
(Figs. 3b and 3c). Under the high catch preference scenario, the rate of 
positive responses decreased with additional bias for a given coverage 
rate (i.e., opposite to the other tests), and under the low catch preference 
scenario nearly all results were positive, regardless of coverage or bias 
added (including no bias). 

3.1.2. Estimated effect sizes 
With no deployment effect, the b̂t estimates from the t-test were over 

90% accurate (Fig. 4a) but less than 13% precise (Fig. 4b). Confidence 
intervals were generally centered on and symmetric around the true bias 
added (Figs. 5a and 5d). With high-preference deployment effects the 
estimated effect size was always more positive than the true bias 
(Fig. 5 g and 5j), and with low-preference deployment effects, the esti
mated effect size was always more negative than the true bias (Fig. 5 m 
and 5p), including when no observer effect was added. 

The estimated effect size b̂g associated with the GLMM observed 
factor tended to be slightly more positive than the observer effect 
introduced (Figs. 5b, 5e, 5 h, 5k, 5 n, and 5q). This trend was similar for 
all coverage rates, with a much larger variability between iterations at 
low coverage. Accuracy was between 84% and 97% for all scenarios 
(Figs. 4c, 4i, and 4o), but precision was less than 10% for all but the high 
bias scenarios (Figs. 4d, 4j, and 4p). 

The estimated effect size b̂m from the median difference generally 
had much narrower confidence intervals than b̂t or b̂g, but consistently 
underestimated the magnitude of the actual observer effect (Fig. 5 f, 5 l, 
and 5r). Accuracy decreased noticeably with increasing observer effect 
magnitude, particularly at moderate coverage levels where precision 
was also highest (Figs. 4e, 4f, 4k, 4l, 4q, and 4r). Accuracy was highest at 
the largest and smallest coverage rates where precision was lowest due 
to the very wide confidence intervals. 

3.1.3. Trip filtering 
The inconsistent pattern of performance on the K-S and median 

differences tests can be explained by the triplet selection process (Fig. 6). 
With no deployment effects, at 5% coverage a large proportion of the 

D. Duarte and S.X. Cadrin                                                                                                                                                                                                                    



Fisheries Research 274 (2024) 107000

6

Fig. 1. Rate of false positives on simulated groundfish landings with no observer effect added. Panels f, g, k, and l shown on a different axis scale because they were 
far outside of the range of the other panels. Dashed line represents p = 0.05. Shaded areas represent central 95% intervals from 500 resamples. 

D. Duarte and S.X. Cadrin                                                                                                                                                                                                                    



Fisheries Research 274 (2024) 107000

7

data were used in the final analysis (67% of observed trips, 54% of 
unobserved trips, and 99% of vessels, on average). As coverage rates 
increased, the probability of finding two consecutive observed trips 
increased, so the frequency of U-O-U triplets decreased, leading to a 
lower proportion of the observed trips being used in the final analysis (to 
less than 1% at 85% coverage), and higher coverage meant that the 
likelihood of finding three consecutive unobserved trips to create the U- 
U-U triplets also decreased, so that fewer than 8% of unobserved trips 
were used, and those were mostly in the O-U pairs (Fig. 6a). The number 
of vessels remained high so long as coverage was below 45%, but then 
dropped such that on average only 9% of the original vessels remained at 
85% coverage (Fig. 6b). 

More trips occurred on vessels with either high or low average 
landings when there was a deployment effect. At moderate coverage, 
those vessels were more likely to have 3 sequences, and so were more 
likely to be retained, while non-preferred vessels tended to drop out. At 
higher coverage rates the preferred vessels were more likely to have 
back-to-back observed trips, which would never be included in the 

triplet filtering algorithm. At 25% coverage, 99% of vessels were 
retained, the same as in the no preference scenario, then decreased as 
coverage exceeded 35%, but remained higher at the highest coverage 
(42% at 85% coverage, Fig. 6d and 6f). The percent of observed trips 
retained still dropped from 65% at the lowest coverage to 5% at the 
highest, while the percent of retained unobserved trips stayed near 50% 
at all coverage rates above 45% (Fig. 6c and 6e). This explains why the 
median difference and K-S tests showed low reliability at high coverage 
rates for no deployment effect but were seemingly “fixed” by including a 
deployment effect – there were still enough trips in the selected pool to 
estimate the simulated observer effect (which in this simulation was the 
same for all trips), but only for the portion of vessels that remained in the 
analysis. 

3.2. Sensitivity to parameter values 

False positive rates did not vary consistently with changes in 
parameter values (Fig. 7). The major exception was the increase in false 

Fig. 2. Rate of true positives (power) on simulated groundfish landings with observer and deployment effects added. Shaded areas represent central 95% intervals 
from 500 resamples. 
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positives from the t-test as μs (how much each trip deviates from that 
vessel’s mean) increased at the highest and lowest coverage rates 
(Fig. 7c). There was also an increase in t-test false positives with 
increasing σm(how much each vessel’s mean deviates from the central 
mean) at the lowest coverage rate (Fig. 7b), and a slight decrease in the 
false positive rate of the median difference test with larger σs (how much 
each vessel’s variance deviates from the overall variance, Fig. 7t). 

The minimum detectable effect sizes responded to changes in the 
hyperparameters more clearly (Fig. 8). The t-test and F-test were less 
able to detect small effects as σm and μs increased (Figs. 8b, 8c, 8f, and 
8g) and to a lesser extent with increasing σs (Figs. 8d and 8h). The GLMM 
test was relatively unaffected by all changes except for a decrease in 
power with increasing μm (the central mean around which each vessel 
and trip varies, Fig. 8i) and a slight decrease with increasing μs (Fig. 8k). 
The K-S test and median difference test were less likely to detect smaller 
effects with increasing μs (Figs. 8o and 8s) and somewhat more likely to 
detect smaller effects with increasing σs (Figs. 8p and 8t). Minimum 
detectable effect sizes could not be determined for the K-S test and 
median difference test at the 85% coverage rate level because all levels 
of bias had power less than 0.75 due to trip filtering. 

3.3. Application to New England groundfish landings data 

When applied to the actual New England groundfish landings data, 4 
of the 5 tests did not detect an observer effect, with the GLMM test 
suggesting a significant decrease of 38% on observed trips (AIC differ
ence = 13.67, Table 2). The t-test indicated an increase of 15% landed 
groundfish weight on observed trips but was not significant (t-test p =
0.14, F-test p = 0.13). The K-S test was also not significant (p = 0.11) 
and the median difference was 0%. Because of the random selection of 
the first or last trip in a triplet, the K-S and median difference test results 

varied even though the observed trip assignments were unchanged: 42% 
of 500 iterations returned a significant result on the K-S test and 0.4% 
returned a significant result on the median difference test; the b̂m values 
also changed slightly by iteration. The other tests did not change when 
re-running analyses on the same data. 

Compared to the null distribution, 13.0% of iterations had a t-sta
tistic at least as far from 0 as the observed value (2-tailed). For the F-test, 
13.2% of replicates had an F-statistic at least as large as the observed 
value. For the K-S test, 6.4% of replicates had a D-statistic at least as 
large as the observed value. These differed slightly from the p-values 
calculated for each test but are similarly non-significant. Only 1.0% of 
iterations under the null hypothesis had a median difference not equal to 
the observed value of 0. For the GLMM test, the observed statistic was 
larger than all simulated values, suggesting strongly significant results. 

Estimated effect sizes differed by test. Under the null hypothesis, 
63.2% of b̂t ranges contained the observed b̂t value; 2.2% of b̂g ranges 
contained the observed b̂g value; and 100% of b̂m ranges contained the 
observed b̂m value. This is consistent with the tests for significance. 

4. Discussion 

Through simulation, we demonstrated that the existing methods for 
detecting an observer effect can be reliable under certain conditions. An 
ideal test would have a low false positive rate, have a high true positive 
rate (power), provide a precise and unbiased estimate of the effect size, 
and be reliable across various underlying distributions. No single test 
reviewed here fulfilled all these criteria. 

All statistical tests are predicated on some underlying assumptions 
about the data distribution and sampling mode. The underlying data 
structure used here should have invalidated several of the test 

Fig. 3. Minimum detectable effect sizes for five tests on simulated groundfish landings by coverage rate. Minimum sizes could only be calculated for t-test and F-test 
under the no preference scenario. 
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assumptions, such as the assumption of normality for t-tests. The large 
sample sizes may have improved the outcome because of the Central 
Limit Theorem, but this might not hold for a smaller dataset, such as a 
fishery with few overall trips and/or low coverage rates. Some fleets in 
the Northeast region require less than 1% of trips to be covered per the 
SBRM recommendations (Wigley and Tholke, 2020). For these fisheries, 
it would be difficult to interpret the results of observer effect detection, 
as both positive and negative results may be unreliable. 

Simulations always require some simplification of real-world dy
namics. In this study, observer effects were intentionally consistent 
across all observed trips (i.e., always a fixed percent reduction from the 
original value drawn) so that results could been compared to a single 
true value. In application to fishery monitoring data, we would not 
expect such consistency. Some vessels may alter their behavior every 
time, some may change depending on various factors (familiarity with 
the individual observer, amount of quota remaining, prior intentions for 
the trip, etc.), and some vessels may never change their behavior. 

Modeling human behavior is difficult, but we may be able to identify 
expected reactions to certain circumstances. For example, Demarest 
(2019) suggests that the shift in management measures from an 
input-control (fishing effort) to an output-control (removals) regime in 
the groundfish fisheries created higher economic incentives for observer 
effects because discards now represent a direct cost to the industry. 
Extension of this work could include additional (but plausible) indi
vidual heterogeneity to understand how this would affect the perfor
mance of tests. 

4.1. t-test and F-test 

The t-test and F-test were unable to distinguish deployment and 
observer effects. These methods could be used for answering overall 
questions such as “are observed trips representative of unobserved 
trips?” but should not be used to evaluate observer effects specifically 
(as opposed to any other type of systematic bias) unless there is 

Fig. 4. Accuracy and precision of the estimated observer effect magnitude from the t-test (b̂t), GLMM (b̂g), and median difference (b̂m) in simulated groundfish 
landings. Accuracy is the percent of iterations for which the 95% confidence interval contained the true level of observer effect added in the simulation, and precision 
is the percent of iterations for which the interval width is less than 20%. 
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sufficient evidence that other sources of non-randomness are not 
occurring. In the absence of deployment effects, both tests tended to 
perform best at moderate to high coverage rates (15–75%). There was an 
increase in false positive rates at lower coverage and an increase in false 
negatives at higher coverage, likely due to the low number of either 
observed or unobserved trips leading to higher variance in that category. 
There is also the possibility of higher false positive and false negative 
rates with larger between-vessel variance. Thus, these tests may be 
preferred for metrics with smaller ranges, such as days absent, the 
number of areas fished, the number of market categories landed, etc. 
Because these tests use an assumption of normality, transforming or 
scaling the metric (e.g., centering at zero) before testing may make them 
more appropriate for use with larger metrics. Values could also be 
standardized to the mean for each vessel, or paired differences by vessels 
could be used. The data could also be scaled on other variables such as 
trip duration or vessel size, neither of which was simulated directly in 

this study. 
The estimated effect size from the t-test tended to be accurate but 

with wide margins of error that reduce its utility in drawing clear con
clusions. With no deployment effects, both tests were at best able to 
detect observer effect sizes as small as 25%. Therefore, the significant 
differences reported by Liggins et al. (1997) which used this method 
should be interpreted as a potential mix of deployment and observer 
effects. Due to low coverage rates, the non-significant results reported by 
Liggins et al. (1997) and Rago et al. (2005) should be interpreted either 
as an observer effect with low magnitude, or as a deployment effect 
masking an observer effect in the opposite direction (e.g., a preference 
towards vessels with higher landings coinciding with a reduction in 
landings on observed trips). 

Fig. 5. 95% confidence intervals for the estimated effect size of the bias factor from the t-test (b̂t), GLMM (b̂g), and median difference (b̂m) for groundfish landings 
from simulated data. The solid horizontal grey line represents 0 (no observer effect), the thin dotted line is the level of observer effect added to the simulations, the 
thin black line is the mean estimated effect size from 500 simulations, and the grey ribbon is the mean of the 500 95% confidence intervals around the estimated 
effect sizes. 
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4.2. GLMM 

The GLMM test performed most consistently over the range of our 
simulations, particularly in the moderate coverage range of 25–75%. 
False positive rates were above 5% in several scenarios but rarely above 
10%. The GLMM test was generally insensitive to changes in hyper
parameters; there was some decrease in performance with the addition 
of deployment effects but the changes were less substantial than those 
for the other two methods. However, the GLMM was not able to detect 
smaller effect sizes, particularly at low coverage. Applying these con
clusions to the Faunce and Barbeaux (2011) results, the two fisheries 
with significant GLMM results likely had observer effects of at least 
moderate magnitude, the three fisheries with non-significant results 
could have had observer effects of smaller magnitude, and the deploy
ment effects identified in the same study likely did not affect these 
conclusions. 

Estimated effect sizes with the GLMM test tended to be accurate but 
also suffered from wide margins of error, though not as large as the t-test 
estimate. Minimum detectable effect sizes were relatively consistent 
across all parameter changes, except for a slight increase with higher 
mean values. This method possibly suffered because it could not be 
optimized for any single dataset. If an investigator was performing this 
method on a single fishery, they perhaps could improve the estimates 

somewhat by manipulating details (such as the Box-Cox parameter) or 
including additional covariates that could not be done for thousands of 
replicates. One could also use a different value for the AIC difference 
threshold. Here we used 2 to follow the original study, which is based on 
Burnham and Anderson’s (2004) rule of thumb; in essence, an observer 
effect is only declared when the model without the observer factor is 
outside the range of “substantial support” relative to the model with the 
observer factor. Using a threshold of 4 (not shown) resulted in the 
reduction of the false positive rate (to the lowest rate among these tests) 
but also a decrease in the ability to detect smaller effect sizes. 

4.3. Triplet method 

The K-S and median difference tests had high reliability at moderate 
coverage (10–40%) without deployment effects, but performance 
decreased as coverage increased. At high coverage (>60%) these 
methods should be avoided because of the high rates of both false pos
itives and false negatives. Even in the ideal range, the median difference 
tended to underestimate the magnitude of the observer effect, with a 
misleadingly narrow confidence interval that failed to capture the true 
value more often than would be expected. These methods were able to 
detect smaller effect sizes than the other methods, and so could be useful 
if there are concerns that a small observer effect is having a large impact. 

Fig. 6. Proportion of original trips and vessels that remained after triplet analysis filtering from simulated data, by coverage rate and deployment effect.  
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These methods would be best used in fisheries with moderate observer 
coverage and for metrics that do not have a wide variation from trip-to- 
trip within a particular vessel. Both tests were able to distinguish be
tween observer and deployment effects, making them important tools 
for determining the source of bias. The Anderson-Darling two-sample 
test could have been used in place of the Kolmogorov-Smirnov test, 
being more sensitive to deviations in the tails of the distributions, 

although a small scale simulation (not shown) suggested that overall 
strengths and weaknesses were the same. Another possible modification 
is the use of bias-corrected and accelerated bootstrap intervals (DiCiccio 
and Efron, 1996) which in a small simulation (not shown) improved 
detection rates for small effect sizes, but also increased false positive 
rates. 

Benoît and Allard (2009) found statistically significant deployment 

Fig. 7. Rate of false positives from observer effect detection tests on unbiased simulated data by changes in hyperparameter values. The horizontal dashed line 
indicates 0.05 (Type I error rate benchmark) and the vertical dotted lines indicate hyperparameter values used in the groundfish landings simulations. 
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effects prioritizing higher catches and all fisheries reported had signif
icant observer effects using the triplet analysis. With coverage rates 
around 6%, these fisheries likely had observer effects of at least mod
erate magnitude, and the true difference was likely larger than the re
ported median difference. Demarest (2019) reported a mix of significant 
and non-significant results across various coverage rates. It is possible 
that a consistent observer effect could be detectable in years with higher 

coverage but not detectable in years with lower coverage. For example, 
our simulations suggest a fixed 10% decrease in groundfish landings on 
observed trawl trips could result in the median differences reported by 
Demarest in all four time periods. 

The major caveat with the triplet selection method is that it does not 
use the entire dataset. First, trips that do not fall into a U-U-U or U-O-U 
sequence are removed, and then vessels which do not have at least three 

Fig. 8. Minimum detectable effect sizes for five tests on simulated data by changes in hyperparameter values. The horizontal dashed line indicates observer effect 
size of − 30% and the vertical dotted lines indicate hyperparameter values used in the groundfish landings simulations. 
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sequences are dropped. Further, vessels must have at least one unob
served trip to calculate the mean unobserved value (the denominator for 
the calculation of the Δ values). As coverage rates rise, the likelihood of 
back-to-back observed trips increases, reducing the number of U-O-U 
sequences. Every observed trip bounded by another observed trip would 
be removed. At the highest coverage rates, the only vessels remaining in 
the analysis are those with the fewest observed trips. With deployment 
effects, the vessels that are preferentially covered will have a lower 
proportion of their trips used in the analysis. This could provide another 
pathway for confounding observer and deployment effects, if for 
example vessels with higher or lower coverage rates were more likely to 
change behavior on observed trips. In other words, the triplet method 
can only draw conclusions about a subset of trips and vessels, not the 
entire fleet. To a lesser extent these concerns also apply to the mixed 
effects model, which removed vessels that did not have at least two 
observed and two unobserved trips. This may explain the poor perfor
mance at the highest and lowest coverage rates, as many vessels would 
not contribute their data to the analysis. But the GLMM test filtering only 
applied to vessels, whereas the triplet method filtered at both the trip 
and vessel level. Randomization within the triplet selection step (i.e., 
choosing the first or last trip within a sequence to form a pair) also led to 
inconsistent results when the test was run multiple times on the same 
data. In general, therefore, a method that uses more of the data and 
provides consistent results should be preferred. 

4.4. Application to New England groundfish landings data 

The goal of including a real-life example was not to determine 
conclusively whether an observer effect was occurring, but to demon
strate how conflicting results on these tests may be interpreted. Starting 
with the only significant result, the GLMM suggests an effect size of 
− 38%, possibly as large as − 51% or as small as − 21%. At this coverage 
rate, the GLMM test can reliably detect effects of this size at least 75% of 
the time, with false positive rates less than 10%, so results can be 
considered reliable. The contradiction in direction of effect from the t- 
test estimating a positive effect while GLMM estimated a negative effect 
could indicate the presence of a deployment effect with a preference 
towards vessels with higher landings. With such a deployment effect and 
an observer effect around − 40%, the t-test and F-test would be expected 
to return a false negative about 50% of the time. The K-S and median 
difference results do not fit neatly into this narrative, however. In this 
scenario, we would expect both of these tests to return a significant 
result nearly every time, regardless of randomization. The estimated 
effect size should also be in the range of about − 40 to − 25%, not − 4 to 
–0%. It is possible that the observed trips that remained after triplet 
filtering were more similar to the unobserved trips, and the observed 
trips that were dropped reflected different behavior. 

In the simulated data, deployment effects and observer effects were 
independent, and the magnitude of the observer effect was the same on 
all unobserved trips. In the real world, we would not expect such uni
formity, and it is not unreasonable to suspect that vessels that experience 
disproportionately higher coverage may behave differently from vessels 

that are only rarely observed. For example, if vessels that were often 
covered on back-to-back trips were more likely to change behavior than 
those that were only covered sporadically, the median difference of the 
remaining pairs would likely be small. Thus, one explanation could be 
that non-random allocation of observers caused higher coverage on 
vessels that tended to have high landings; at the same time, those vessels 
tended to land less catch on trips with observers than they would 
otherwise, whereas vessels with lower coverage tended to have similar 
landings on all their trips. The combined impact of the observer and 
deployment effects would be that the overall observed landings were 
slightly, but not significantly higher than on unobserved trips, but when 
standardized by vessel the observed trips had roughly 40% lower 
landings than observed trips. Note that this is one hypothetical scenario 
that explains the results; others may exist. 

Fisheries dynamics are complex and require thoughtful interpreta
tion. It would be inaccurate to label any difference arising from random 
processes as a deliberate shift in behavior. Likewise, it is incorrect to 
assume that mitigation measures intended to reduce observer effects 
would also reduce other effects and uncertainties (such as deployment 
effects, observer error, etc.). When observer data are suspected of being 
not representative of total fishing effort, the reason for that discrepancy 
should be evaluated before potential mitigation actions are taken. It is 
also important to consider how those actions will impact the ability to 
determine whether the issue has been resolved. For example, suppose a 
management agency used the median difference test to conclude that an 
observer effect of magnitude − 30% was occurring in a year when 
coverage rates were near 30%. They decide to increase observer 
coverage to 70% in the following year. When they analyze the second 
year’s data, they may get a non-significant result and conclude that the 
issue has been resolved, when in fact the vessels were still changing 
behavior on the 30% of trips that were not covered. 

5. Conclusions 

The ability to accurately identify observer effects and estimate their 
magnitude will be important for effective fisheries management 
decision-making, as modifications to monitoring programs can be costly 
and complicated. Unfortunately, the tests investigated here did not al
ways provide simple, accurate results. They were often contradictory 
with each other for the same dataset, sensitive to changes in coverage or 
other parameters, confounded by deployment effects, or imprecise in 
their estimates of effect sizes. This was under simplified conditions with 
constant observer and deployment effects across the fleet; real condi
tions would offer even more confusion and contradictions. 

The selection of which test to use, if only one is to be performed, 
should be based on the specifics of the fishery and metric of interest. If 
one is only interested in the overall differences between observed and 
unobserved trips and not in the source of differences or vessel-specific 
impacts, then the t-test and F-test should be sufficient. If it is impor
tant to identify observer effects specifically and deployment effects may 
or may not be present, then the GLMM method would be preferred but is 
likely to miss smaller effect sizes. If smaller observer effects are impor
tant to identify and the coverage rates are low or moderate, then the 
triplet analysis may be the preferred test, with the caveat that the 
magnitude of the estimated effect size from the median difference is 
likely underestimated. Using all five tests in combination may require 
interpretation of conflicting results, but likely provides the most com
plete understanding of the fishery under investigation. 
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Table 2 
Results of tests for observer effects applied to actual groundfish landings data 
from New England large mesh bottom trawl, April 2018 through March 2019.  

Test Statistic 
value 

p- 
value 

Significant? b̂ 
estimate 

b̂ range 

t-test  -1.47  0.14 No  0.15 -0.05 – 
0.34 

F-test  2.29  0.13 No    
GLMM  13.67   Yes  -0.38 -0.51 – 

− 0.21 
K-S test  0.08  0.11 No    
Median 

difference  
0.00   No  0.00 -0.04 – 

0.00  
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